Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.824
Filtrar
1.
Cells ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38607088

RESUMO

Muscle regeneration, representing an essential homeostatic process, relies mainly on the myogenic progress of resident satellite cells, and it is modulated by multiple physical and nutritional factors. Here, we investigated how myogenic differentiation-related factors and pathways respond to the first limiting amino acid lysine (Lys) in the fast and slow muscles, and their satellite cells (SCs), of swine. Thirty 28-day-old weaned piglets with similar body weights were subjected to three diet regimens: control group (d 0-28: 1.31% Lys, n = 12), Lys-deficient group (d 0-28: 0.83% Lys, n = 12), and Lys rescue group (d 0-14: 0.83% Lys; d 15-28: 1.31% Lys, n = 6). Pigs on d 15 and 29 were selectively slaughtered for muscular parameters evaluation. Satellite cells isolated from fast (semimembranosus) and slow (semitendinosus) muscles were also selected to investigate differentiation ability variations. We found Lys deficiency significantly hindered muscle development in both fast and slow muscles via the distinct manipulation of myogenic regulatory factors and the Wnt/Ca2+ pathway. In the SC model, Lys deficiency suppressed the Wnt/Ca2+ pathways and myosin heavy chain, myogenin, and myogenic regulatory factor 4 in slow muscle SCs but stimulated them in fast muscle SCs. When sufficient Lys was attained, the fast muscle-derived SCs Wnt/Ca2+ pathway (protein kinase C, calcineurin, calcium/calmodulin-dependent protein kinase II, and nuclear factor of activated T cells 1) was repressed, while the Wnt/Ca2+ pathway of its counterpart was stimulated to further the myogenic differentiation. Lys potentially manipulates the differentiation of porcine slow and fast muscle myofibers via the Wnt/Ca2+ pathway in opposite trends.


Assuntos
Lisina , Fatores de Regulação Miogênica , Animais , Suínos , Fatores de Regulação Miogênica/metabolismo , Lisina/metabolismo , Músculo Esquelético/metabolismo , Diferenciação Celular , Cadeias Pesadas de Miosina/metabolismo
2.
Cancer Biol Ther ; 25(1): 2314324, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38375821

RESUMO

Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.


Assuntos
Neoplasias Colorretais , Integrina beta4 , 60655 , Fatores de Regulação Miogênica , Proteínas Proto-Oncogênicas c-akt , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Integrina beta4/genética , Integrina beta4/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Oxaliplatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , 60655/genética , 60655/metabolismo
3.
Gene ; 909: 148322, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38423140

RESUMO

Myocyte-specific enhancer binding factor 2 (MEF2), which belongs to the MADS superfamily, is a pivotal and conserved transcription factor that combines with the E-box motif to control the expression of muscle genes. Myostatin (mstn), a muscle growth inhibitor, is a vital member of the TGF-ß superfamily. Currently, an understanding of the mechanisms of A. latus mstn (Almstn) transcriptional regulation mediated by MEF2 in fish muscle development is lacking. In the present study, two AlMEF2s (AlMEF2A and AlMEF2B) and Almstn2a were characterized from Acanthopagrus latus. AlMEF2A and AlMEF2B had 456 and 315 amino acid (aa) residues, respectively. Two typical regions, a MADS-box, MEF2, and transcriptionally activated (TAD) domains, are present in both AlMEF2s. The expression profiles of the two AlMEF2 genes were similar. The AlMEF2 genes were mainly expressed in the brain, white muscle, and liver, while Almstn2a expression was higher in the brain than in other tissues. Moreover, the expression trends of AlMEF2s and Almstn2a were significantly changed after starvation and refeeding in the five groups. Additionally, truncation experiments showed that -987 to +168 and -105 to +168 were core promoters of Almstn2a that responded to AlMEF2A and AlMEF2B, respectively. The point mutation experiment confirmed that Almstn2a transcription relies on the mutation binding sites 1 or 5 (M1/5) and mutation binding sites 4 or 5 (M4/5) for AlMEF2A and AlMEF2B regulation, respectively. The electrophoretic mobile shift assay (EMSA) further verified that M1 (-527 to -512) was a pivotal site where AlMEF2A acted on the Almstn2a gene. Furthermore, a siRNA interference gene expression experiment showed that reduced levels of AlMEF2A or AlMEF2B could prominently increase Almstn2a transcription. These results provide new information about the regulation of Almstn2a transcriptional activity by AlMEF2s and a theoretical basis for the regulatory mechanisms involved in muscle development in fish.


Assuntos
Perciformes , Dourada , Animais , Dourada/genética , Dourada/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Músculos/metabolismo , Perciformes/genética , Perciformes/metabolismo
4.
Nucleic Acids Res ; 52(5): 2711-2723, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38281192

RESUMO

Class IIa Histone deacetylases (HDACs), including HDAC4, 5, 7 and 9, play key roles in multiple important developmental and differentiation processes. Recent studies have shown that class IIa HDACs exert their transcriptional repressive function by interacting with tissue-specific transcription factors, such as members of the myocyte enhancer factor 2 (MEF2) family of transcription factors. However, the molecular mechanism is not well understood. In this study, we determined the crystal structure of an HDAC4-MEF2A-DNA complex. This complex adopts a dumbbell-shaped overall architecture, with a 2:4:2 stoichiometry of HDAC4, MEF2A and DNA molecules. In the complex, two HDAC4 molecules form a dimer through the interaction of their glutamine-rich domain (GRD) to form the stem of the 'dumbbell'; while two MEF2A dimers and their cognate DNA molecules are bridged by the HDAC4 dimer. Our structural observations were then validated using biochemical and mutagenesis assays. Further cell-based luciferase reporter gene assays revealed that the dimerization of HDAC4 is crucial in its ability to repress the transcriptional activities of MEF2 proteins. Taken together, our findings not only provide the structural basis for the assembly of the HDAC4-MEF2A-DNA complex but also shed light on the molecular mechanism of HDAC4-mediated long-range gene regulation.


Assuntos
DNA , Histona Desacetilases , Fatores de Transcrição MEF2 , Proteínas Repressoras , DNA/química , DNA/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Fatores de Transcrição MEF2/química , Fatores de Transcrição MEF2/metabolismo , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Humanos , Histona Desacetilases/química , Histona Desacetilases/metabolismo
5.
Mol Biol Rep ; 51(1): 128, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236311

RESUMO

BACKGROUND: Muscle occupies most of the fish body, promoting the proliferation of fish muscle fibers can facilitate rapid growth and increase the body weight of fish. Some studiesSeveral previous suggest that Myogenic regulatory factors (MRFs) play an important role in the growth of fish. OBJECTIVE: To investigate the association between the polymorphism of MRFs gene family and growth traits in Nile tilapia (Oreochromis niloticus), get more molecular markers for growth. METHODS: Amplified the Nile tilapia MRFs family gene, including Myogenic determination 1 (Myod1), Myogenic determination 2 (Myod2), Myogenin (Myog), Myogenic factor 5 (Myf5), and Myogenic factor 6 (Myf6), single nucleotide polymorphism (SNP) were screened by Sanger sequencing. RESULTS: A total of 16 SNP loci were screened, including six for Myf5, six for Myf6, one for Myog, one for Myod1 and two for Myod2. The growth traits were analyzed in relation to these 16 SNP loci, and the results indicated significant associations between all 16 SNP loci and the growth traits (P < 0.05). The linkage disequilibrium analysis revealed that D1 and D2 diplotypes of Myf5 gene, E1, E2, E3 and E4 of Myf6 gene, and F1 diplotype of Myod2 gene were significantly associated with superior growth traits. CONCLUSION: There were 6, 6, 1, 1 and 2 growth-related molecular markers in Myf5, Myf6, Myog, Myod1 and Myod2 genes, respectively, which could be applied to the breeding of Nile tilapia.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Regulação Miogênica , Fator Regulador Miogênico 5 , Peso Corporal
6.
Artigo em Inglês | MEDLINE | ID: mdl-38237655

RESUMO

The present study explores growth potential of two medicinal herbs, Withania somnifera (Ashwagandha or 'A') and Asparagus racemosus (Shatavari or 'S') after their dietary inclusion in fish, Channa punctatus (13.5 ± 2 g; 11.5 ± 1 cm). Three hundred well-acclimatized fish were distributed into 10 groups- C (Control), S1 (1% S), S2 (2% S), S3 (3% S), A1 (1% A), A2 (2% A), A3 (3% A), AS1 (1% A and S), AS2 (2% A and S), and AS3 (3% A and S), each having 10 specimens. Fish were fed with these diets for 60 days. The study was performed in triplicate. Growth indices- weight gain (WG), specific growth rate percentage (SGR%), feed intake (FI), and condition factor (CF), after 30 and 60 days, were found significantly (p < 0.05) up-regulated in all the groups, except S1, when compared to the C. A significant (p < 0.05) increase in final body weight (FBW) was noticed in all the groups, except S1, after 60 days. Relative to the control group, activities of lipase and amylase in the gut tissue were elevated in all groups, at both sampling times, with the exception of lipase in S1 at 60 days, and amylase in S1 at day 30 and day 60 and S2 at day 60. The mRNA expression of myogenic regulatory factors (MRFs) was also found to be significantly (p < 0.05) up-regulated with the highest fold changes recorded in AS3 for myoD (3.93 ± 0.91); myoG (6.71 ± 0.30); myf5 (4.40 ± 0.33); MRF4 (4.94 ± 0.21) in comparison to the C.


Assuntos
60455 , Fatores de Regulação Miogênica , Withania , Animais , Withania/genética , Dieta/veterinária , Peixes , Amilases , Lipase , Ração Animal/análise
7.
Am J Sports Med ; 51(13): 3554-3566, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743748

RESUMO

BACKGROUND: Low-intensity pulsed ultrasound (LIPUS) irradiation has been shown to induce various responses in different cells. It has been shown that LIPUS activates extracellular signal-regulated kinase 1/2 (ERK1/2) through integrin. PURPOSE: To study the effects of LIPUS on myogenic regulatory factors and other related myogenesis elements in a volumetric skeletal muscle loss injury model. STUDY DESIGN: Controlled laboratory study. METHODS: C57BL/6J mice were subjected to full-thickness muscle defect injury of the quadriceps and treated with direct application of LIPUS 20 min/d or non-LIPUS treatment (control) for 3, 7, and 14 days. LIPUS was also applied to C2C12 cells in culture in the presence of low and high doses of lipopolysaccharides. The expression levels of myogenic regulatory factors and the expression levels of myokine-related and angiogenic-related proteins of the control and LIPUS groups were analyzed. RESULTS: Muscle volume in the injury site was restored at day 14 with LIPUS treatment. Paired-box protein 7, myogenic factor 5, myogenin, and desmin expressions were significantly different between control and LIPUS groups at days 7 and 14. Myokine and angiogenic cytokine-related factors were significantly increased in the LIPUS group at day 3 and decreased with no significant difference between the groups by day 14. LIPUS induced different responses of myogenic regulatory factors in C2C12 cells with low and high doses of lipopolysaccharides. LIPUS promoted myogenesis through short-lived increase in interleukin-6 and heme oxygenase 1, together with activation of ERK1/2. CONCLUSION: LIPUS had a constant effect on the variables of tissue damage, from macrotrauma to microtrauma, leading to efficient muscle regeneration. CLINICAL RELEVANCE: The focus of therapeutic strategies with LIPUS has been not only for microvascular regeneration but also for skeletal muscle and related local tissue recovery from acute or chronic damage.


Assuntos
Músculo Esquelético , Terapia por Ultrassom , Camundongos , Animais , Camundongos Endogâmicos C57BL , Fatores de Regulação Miogênica/metabolismo , Desenvolvimento Muscular , Ondas Ultrassônicas
8.
Science ; 381(6659): 799-804, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590348

RESUMO

Piezo channels are critical cellular sensors of mechanical forces. Despite their large size, ubiquitous expression, and irreplaceable roles in an ever-growing list of physiological processes, few Piezo channel-binding proteins have emerged. In this work, we found that MyoD (myoblast determination)-family inhibitor proteins (MDFIC and MDFI) are PIEZO1/2 interacting partners. These transcriptional regulators bind to PIEZO1/2 channels, regulating channel inactivation. Using single-particle cryogenic electron microscopy, we mapped the interaction site in MDFIC to a lipidated, C-terminal helix that inserts laterally into the PIEZO1 pore module. These Piezo-interacting proteins fit all the criteria for auxiliary subunits, contribute to explaining the vastly different gating kinetics of endogenous Piezo channels observed in many cell types, and elucidate mechanisms potentially involved in human lymphatic vascular disease.


Assuntos
Canais Iônicos , Fatores de Regulação Miogênica , Humanos , Microscopia Crioeletrônica , Células HEK293 , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/metabolismo , Cinética , Doenças Linfáticas/genética , Mutação , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Domínios Proteicos , Mioblastos/metabolismo , Animais , Camundongos
9.
Cells ; 12(9)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37174683

RESUMO

Myoblast fusion is essential for skeletal muscle development, growth, and regeneration. However, the molecular mechanisms underlying myoblast fusion and differentiation are not fully understood. Previously, we reported that interleukin-4 (IL-4) promotes myoblast fusion; therefore, we hypothesized that IL-4 signaling might regulate the expression of the molecules involved in myoblast fusion. In this study, we showed that in addition to fusion, IL-4 promoted the differentiation of C2C12 myoblast cells by inducing myoblast determination protein 1 (MyoD) and myogenin, both of which regulate the expression of myomerger and myomaker, the membrane proteins essential for myoblast fusion. Unexpectedly, IL-4 treatment increased the expression of myomerger, but not myomaker, in C2C12 cells. Knockdown of IL-4 receptor alpha (IL-4Rα) in C2C12 cells by small interfering RNA impaired myoblast fusion and differentiation. We also demonstrated a reduction in the expression of MyoD, myogenin, and myomerger by knockdown of IL-4Rα in C2C12 cells, while the expression level of myomaker remained unchanged. Finally, cell mixing assays and the restoration of myomerger expression partially rescued the impaired fusion in the IL-4Rα-knockdown C2C12 cells. Collectively, these results suggest that the IL-4/IL-4Rα axis promotes myoblast fusion and differentiation via the induction of myogenic regulatory factors, MyoD and myogenin, and myomerger.


Assuntos
Interleucina-4 , Fatores de Regulação Miogênica , Diferenciação Celular/genética , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Mioblastos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Miogenina/genética , Miogenina/metabolismo , Animais , Camundongos
10.
Poult Sci ; 102(5): 102608, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36948037

RESUMO

Satellite cells (SCs) are muscle stem cells responsible for muscle hypertrophic growth and the regeneration of damaged muscle. Proliferation and differentiation of the pectoralis major (p. major) muscle SCs are responsive to thermal stress in turkeys, which are, in part, regulated by mechanistic target of rapamycin (mTOR) and Frizzled7 (Fzd7)-mediated wingless-type mouse mammary tumor virus integration site family/planar cell polarity (Wnt/PCP) pathways in a growth dependent-manner. It is not known if chicken p. major SCs respond to thermal stress in a manner similar to that of turkey p. major SCs. The objective of the current study was to investigate the effects of thermal stress and mTOR and Wnt/PCP pathways on the proliferation, differentiation, and expression of myogenic transcriptional regulatory factors in SCs isolated from the p. major muscle of a current modern commercial (MC) broiler line as compared to that of a Cornish Rock (BPM8) and Randombred (RBch) chicken line in the 1990s. The MC line SCs had lower proliferation and differentiation rates and decreased expression of myoblast determination factor 1 (MyoD) and myogenin (MyoG) compared to the BPM8 and RBch lines. Heat stress (43°C) increased proliferation and MyoD expression in all the cell lines, while cold stress (33°C) showed a suppressive effect compared to the control temperature (38°C). Satellite cell differentiation was altered with heat and cold stress in a cell line-specific manner. In general, the differentiation of the MC SCs was less responsive to both heat and cold stress compared to the BPM8 and RBch lines. Knockdown of the expression of either mTOR or Fzd7 decreased the proliferation, differentiation, and the expression of MyoD and MyoG in all the cell lines. The MC line during proliferation was more dependent on the expression of mTOR and Fzd7 than during differentiation. Thus, modern commercial meat-type chickens have decreased myogenic activity and temperature sensitivity of SCs in an mTOR- and Fzd7-dependent manner. The decrease in muscle regeneration will make modern commercial broilers more susceptible to the negative effects of myopathies with muscle fiber necrosis requiring satellite cell-mediated repair.


Assuntos
Galinhas , Células Satélites de Músculo Esquelético , Camundongos , Animais , Galinhas/fisiologia , Músculos Peitorais , Vírus do Tumor Mamário do Camundongo , Células Cultivadas , Proliferação de Células , Diferenciação Celular , Serina-Treonina Quinases TOR/metabolismo , Fatores de Regulação Miogênica/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia
11.
Sci Rep ; 13(1): 5238, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002329

RESUMO

Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.


Assuntos
Proteínas de Ligação a RNA , RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Motivos de Ligação ao RNA/genética , Ligação Proteica , Fatores de Regulação Miogênica/metabolismo
12.
Cell Cycle ; 22(5): 495-505, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184878

RESUMO

Skeletal muscle development is a multistep biological process regulated by a variety of myogenic regulatory factors, including MyoG, MyoD, Myf5, and Myf6 (also known as MRF4), as well as members of the FoxO subfamily. Differentiation and regeneration during skeletal muscle myogenesis contribute to the physiological function of muscles. Super enhancers (SEs) and enhancer RNAs (eRNAs) are involved in the regulation of development and diseases. Few studies have identified the roles of SEs and eRNAs in muscle development and pathophysiology. To develop approaches to enhance skeletal muscle mass and function, a more comprehensive understanding of the key processes underlying muscular diseases is needed. In this review, we summarize the roles of SEs and eRNAs in muscle development and disease through affecting of DNA methylation, FoxO subfamily, RAS-MEK signaling, chromatin modifications and accessibility, MyoD and cis regulating target genes. The summary could inform strategies to increase muscle mass and treat muscle-related diseases.


Assuntos
Músculo Esquelético , Fatores de Regulação Miogênica , Fatores de Regulação Miogênica/genética , Músculo Esquelético/fisiologia , RNA , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Diferenciação Celular/genética
13.
Med Sci Sports Exerc ; 55(2): 199-208, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136603

RESUMO

INTRODUCTION: DNA methylation regulates exercise-induced changes in the skeletal muscle transcriptome. However, the specificity and the time course responses in the myogenic regulatory factors DNA methylation and mRNA expression after divergent exercise modes are unknown. PURPOSE: This study aimed to compare the time course changes in DNA methylation and mRNA expression for selected myogenic regulatory factors ( MYOD1 , MYF5 , and MYF6 ) immediately after, 4 h after, and 8 h after a single bout of resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent exercise (CE). METHODS: Nine healthy but untrained males (age, 23.9 ± 2.8 yr; body mass, 70.1 ± 14.9 kg; peak oxygen uptake [V̇O 2peak ], 41.4 ± 5.2 mL·kg -1 ·min -1 ; mean ± SD) performed a counterbalanced, randomized order of RE (4 × 8-12 repetition maximum), HIIE (12 × 1 min sprints at V̇O 2peak running velocity), and CE (RE followed by HIIE). Skeletal muscle biopsies (vastus lateralis) were taken before (REST) immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS: Compared with REST, MYOD1 , MYF5 , and MYF6 , mean methylation across all CpGs analyzed was reduced after 4 and 8 h in response to all exercise protocols ( P < 0.05). Reduced levels of MYOD1 methylation were observed after HIIE and CE compared with RE ( P < 0.05). Compared with REST, all exercise bouts increased mRNA expression over time ( MYOD1 at 4 and 8 h, and MYF6 at 4 h; P < 0.05). MYF5 mRNA expression was lower after 4 h compared with 0 h and higher at 8 h compared with 4 h ( P < 0.05). CONCLUSIONS: We observed an interrelated but not time-aligned response between the exercise-induced changes in myogenic regulatory factors demethylation and mRNA expression after divergent exercise modes. Despite divergent contractile stimuli, changes in DNA methylation and mRNA expression in skeletal muscle were largely confined to the late (4-8 h) recovery period and similar between the different exercise challenges.


Assuntos
Exercício Físico , Fatores de Regulação Miogênica , Masculino , Humanos , Adulto Jovem , Adulto , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , RNA Mensageiro/metabolismo , Desmetilação
14.
Cells ; 11(24)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36552743

RESUMO

BACKGROUND: During aging, muscle cell apoptosis increases and myogenesis gradually declines. The impaired myogenic and survival potential of the aged skeletal muscle can be ameliorated by its mechanical loading. However, the molecular responses of aged muscle cells to mechanical loading remain unclear. This study examined the effect of mechanical loading of aged, proliferating, and differentiated myoblasts on the gene expression and signaling responses associated with their myogenic lineage progression and survival. METHODS: Control and aged C2C12 cells were cultured on elastic membranes and underwent passive stretching for 12 h at a low frequency (0.25 Hz) and different elongations, varying the strain on days 0 and 10 of myoblast differentiation. Activation of ERK1/2 and Akt, and the expression of focal adhesion kinase (FAK) and key myogenic regulatory factors (MRFs), MyoD and Myogenin, were determined by immunoblotting of the cell lysates derived from stretched and non-stretched myoblasts. Changes in the expression levels of the MRFs, muscle growth, atrophy, and pro-apoptotic factors in response to mechanical loading of the aged and control cells were quantified by real-time qRT-PCR. RESULTS: Mechanical stretching applied on myoblasts resulted in the upregulation of FAK both in proliferating (day 0) and differentiated (day 10) cells, as well as in increased phosphorylation of ERK1/2 in both control and aged cells. Moreover, Akt activation and the expression of early differentiation factor MyoD increased significantly after stretching only in the control myoblasts, while the late differentiation factor Myogenin was upregulated in both the control and aged myoblasts. At the transcriptional level, mechanical loading of the proliferating myoblasts led to an increased expression of IGF-1 isoforms and MRFs, and to downregulation of muscle atrophy factors mainly in control cells, as well as in the upregulation of pro-apoptotic factors both in control and aged cells. In differentiated cells, mechanical loading resulted in an increased expression of the IGF-1Ea isoform and Myogenin, and in the downregulation of atrophy and pro-apoptotic factors in both the control and aged cells. CONCLUSIONS: This study revealed a diminished beneficial effect of mechanical loading on the myogenic and survival ability of the senescent muscle cells compared with the controls, with a low strain (2%) loading being most effective in upregulating myogenic/anabolic factors and downregulating atrophy and pro-apoptotic genes mainly in the aged myotubes.


Assuntos
Fatores de Regulação Miogênica , Proteínas Proto-Oncogênicas c-akt , Miogenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Regulação Miogênica/genética , Mioblastos/metabolismo , Desenvolvimento Muscular/genética
15.
Cells ; 11(20)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291188

RESUMO

Increased oxidative stress can slow down the regeneration of skeletal muscle and affect the activity of muscle satellite cells (mSCs). Therefore, we evaluated the role of the NRF2 transcription factor (encoded by the Nfe2l2 gene), the main regulator of the antioxidant response, in muscle cell biology. We used (i) an immortalized murine myoblast cell line (C2C12) with stable overexpression of NRF2 and (ii) primary mSCs isolated from wild-type and Nfe2l2 (transcriptionally)-deficient mice (Nfe2l2tKO). NRF2 promoted myoblast proliferation and viability under oxidative stress conditions and decreased the production of reactive oxygen species. Furthermore, NRF2 overexpression inhibited C2C12 cell differentiation by down-regulating the expression of myogenic regulatory factors (MRFs) and muscle-specific microRNAs. We also showed that NRF2 is indispensable for the viability of mSCs since the lack of its transcriptional activity caused high mortality of cells cultured in vitro under normoxic conditions. Concomitantly, Nfe2l2tKO mSCs grown and differentiated under hypoxic conditions were viable and much more differentiated compared to cells isolated from wild-type mice. Taken together, NRF2 significantly influences the properties of myoblasts and muscle satellite cells. This effect might be modulated by the muscle microenvironment.


Assuntos
MicroRNAs , Células Satélites de Músculo Esquelético , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Diferenciação Celular/genética , Músculo Esquelético/metabolismo , Estresse Oxidativo , Proliferação de Células , Fatores de Regulação Miogênica/metabolismo , MicroRNAs/metabolismo
16.
Cell Biol Int ; 46(12): 2198-2206, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116024

RESUMO

MyoD family inhibitor (MDFI) is a myogenic transcription factor regulatory protein. MDFI has been proven to be upregulated and to promote cell proliferation in colorectal cancer. However, the role of MDFI in gastric cancer (GC) is unclear. In this study, MDFI expression in GC tissues and cell lines was examined by quantitative real-time PCR and western blot. Cell Counting Kit-8 assay, clone formation assay, and 5-ethynyl-2'-deoxyuridine assay were used to evaluate GC cell proliferation. Glycolysis was assessed by measuring glucose consumption and lactate and ATP production using commercial assay kits. Western blot was used to detect the expression levels of glycolytic key proteins and Wnt/ß-catenin pathway proteins. To activate Wnt/ß-catenin signaling, GC cells were treated with CHIR-99021. We found that MDFI expression was increased in GC tumor tissues and cells with a positive correlation with poor survival. Knockdown of MDFI inhibited the increase in GC cell proliferation and glycolysis induced by Helicobacter pylori. Helicobacter pylori infection promoted MDFI expression and activated Wnt/ß-catenin signaling. What is more, activation of the Wnt/ß-catenin pathway remarkably reversed the effect of knocking down MDFI on GC cells. Further studies found that MDFI participated in GC cell proliferation and glycolysis by regulating the Wnt/ß-catenin pathway, thereby affecting the development of GC. In conclusion, we demonstrated for the first time that knockdown of MDFI inhibited the increase in GC cell proliferation and glycolysis by regulating the Wnt/ß-catenin pathway. MDFI may be a new target for the clinical treatment of GC.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Helicobacter pylori/metabolismo , beta Catenina/metabolismo , Neoplasias Gástricas/metabolismo , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Linhagem Celular Tumoral , Via de Sinalização Wnt , Glicólise , Proteínas Wnt/metabolismo , Proliferação de Células , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Regulação Miogênica
17.
Exp Cell Res ; 419(1): 113299, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926660

RESUMO

Skeletal muscle development and regeneration is governed by the combined action of Myf5, MyoD, Mrf4 and MyoG, also known as the myogenic regulatory factors (MRFs). These transcription factors are expressed in a highly spatio-temporal restricted manner, ensuring the significant functional and metabolic diversity observed between the different muscle groups. In this review, we will discuss the multiple layers of regulation that contribute to the control of the exquisite expression patterns of the MRFs in particular, and of myogenic genes in general. We will highlight all major regulatory processes that play a role in myogenesis: from those that modulate chromatin status and transcription competence, such as DNA methylation, histone modification, chromatin remodeling, or non-coding RNAs, to those that control transcript and protein processing and modification, such as alternative splicing, polyadenylation, other mRNA modifications, or post-translational protein modifications. All these processes are exquisitely and tightly coordinated to ensure the proper activation, maintenance and termination of the myogenic process.


Assuntos
Desenvolvimento Muscular , Fatores de Regulação Miogênica , Montagem e Desmontagem da Cromatina , Expressão Gênica , Regulação da Expressão Gênica , Músculo Esquelético , Fatores de Transcrição
18.
Dev Biol ; 490: 134-143, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35917935

RESUMO

The vertebrate embryonic midline vasculature forms in close proximity to the developing skeletal muscle, which originates in the somites. Angioblasts migrate from bilateral positions along the ventral edge of the somites until they meet at the midline, where they sort and differentiate into the dorsal aorta and the cardinal vein. This migration occurs at the same time that myoblasts in the somites are beginning to differentiate into skeletal muscle, a process which requires the activity of the basic helix loop helix (bHLH) transcription factors Myod and Myf5. Here we examined vasculature formation in myod and myf5 mutant zebrafish. In the absence of skeletal myogenesis, angioblasts migrate normally to the midline but form only the cardinal vein and not the dorsal aorta. The phenotype is due to the failure to activate vascular endothelial growth factor ligand vegfaa expression in the somites, which in turn is required in the adjacent angioblasts for dorsal aorta specification. Myod and Myf5 cooperate with Hedgehog signaling to activate and later maintain vegfaa expression in the medial somites, which is required for angiogenic sprouting from the dorsal aorta. Our work reveals that the early embryonic skeletal musculature in teleosts evolved to organize the midline vasculature during development.


Assuntos
Proteína MyoD , Fatores de Regulação Miogênica , Animais , Aorta/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Musculares/genética , Músculo Esquelético , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
Biomarkers ; 27(8): 753-763, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35946424

RESUMO

BACKGROUND: The present study aimed to analyse the role of myokines and the regeneration capacity of skeletal muscle during chronic hypobaric hypoxia (CHH). METHODS: Male Sprague-Dawley rats were exposed to hypobaric hypoxia (HH) for 1d, 3d and 7d. RESULTS: Exposure to HH enhanced the levels of decorin, irisin, IL-6 and IL-15 till 3 days of hypoxia and on 7 day of exposure, no significant changes were observed in relation to control. A significant upregulation in myostatin, activated protein kinase, SMAD3, SMAD4, FOXO-1, MURF-1 expression was observed with prolonged HH exposure as compared to normoxic control. Further, myogenesis-related markers, PAX-7, Cyclin D1 and myogenin were downregulated during CHH exposure in comparison to control. Energy metabolism regulators such as Sirtuin 1, proliferator-activated receptor gamma coactivator-1α and GLUT-4, were also increased on 1-d HH exposure that showed a declining trend on CHH exposure. CONCLUSIONS: These results indicated the impairment in the levels of myokines and myogenesis during prolonged hypoxia. CHH exposure enhanced the levels of myostatin and reduced the regeneration or repair capacity of the skeletal muscles. Myokine levels could be a predictive biomarker for evaluating skeletal muscle performance and loss at high altitudes.


Assuntos
Fatores de Regulação Miogênica , Miostatina , Ratos , Animais , Masculino , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Ratos Sprague-Dawley , Hipóxia , Músculo Esquelético
20.
Genes (Basel) ; 13(8)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36011349

RESUMO

Previous genome-wide association studies (GWAS) have found that LAP3 may have the potential function to impact sheep muscle development. In order to further explore whether LAP3 expression has an important role in the development of sheep embryonic myoblasts, we conducted the spatiotemporal expression profile analysis of LAP3 at the tissue and cellular level. Then we used small interfering RNA and eukaryotic recombinant vectors to perform gain/loss-of-function analysis of LAP3. CCK-8 detection, EdU staining, and flow cytometry were used to investigate the impact of LAP3 knockdown or overexpression on the proliferation of embryonic myoblasts. In addition, cell phenotype observation, MyHC indirect immunofluorescence, and quantitative detection of the expression changes of myogenic regulatory factors (MRFs) were used to explore the effect of LAP3 on myogenic differentiation. The results showed that the LAP3 expression level in muscle tissue of fetuses was significantly higher than that in newborn lambs and adult sheep, and its expression level on day 3 of differentiation was also significantly higher than that in the proliferation phase and other differentiation time points. LAP3 silencing could significantly increase cell viability and EdU-positive cells, as well as prolonging the length of S phase of myoblasts to promote proliferation, while the results were reversed when LAP3 was overexpressed. Moreover, LAP3 silencing significantly hindered myotube formation and down-regulated the expression levels of MRFs from day 5 to day 7 of terminal differentiation, while the results were reversed when LAP3 was highly expressed. Overall, our results suggested that the expression of LAP3 impacts on the development of sheep embryonic myoblasts which provides an important theoretical basis for molecular breeding of meat production in sheep.


Assuntos
Estudo de Associação Genômica Ampla , Leucil Aminopeptidase , Animais , Proliferação de Células , Leucil Aminopeptidase/genética , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Fatores de Regulação Miogênica/genética , Ovinos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...